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Introduction

The Basic Problem

The 3D incompressible Euler equations are given by

ut + u · ∇u = −∇p, ∇ · u = 0,

with initial condition u(x,0) = u0.

Define vorticity ω = ∇× u, then ω is governed by

ωt + (u · ∇)ω = ∇u · ω.

Note that ∇u is related to ω by a Riesz operator K of degree zero:
∇u = K (ω), and we have ‖ω‖Lp ≤ ‖∇u‖Lp ≤ C‖ω‖Lp for 1 < p <∞.

Thus the vortex stretching term ∇u · ω is formally of the order ω2.
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Introduction

Significance of the Problem

Why important?
The grand open problem: existence or nonexistence of global
regular solutions from smooth initial data

Closely related to one of the seven Clay Millennium Problems

mathematically: the problem remained open for more than 250
years

physically: singularity in inviscid flows may (i) signify the onset of
turbulence in viscous flows, and (ii) be a mechanism for energy
transfer to small scales
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Introduction

Previous Work

On the theoretical side:
Kato (1972): local well-posedness
Beale-Kato-Majda (1984): necessary and sufficient blowup criterion
Constantin-Fefferman-Majda (1996): geometric constraints for
blowup
Deng-Hou-Yu (2005): Lagrangian localized geometric constraints

Other related work:
Constantin-Majda-Tabak (1994): 2D surface quasi-geostrophic
(SQG) equations as a model for 3D Euler
Cordoba (1998): no blowup of 2D SQG near a hyperbolic saddle
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Introduction

Previous Work (Cont’d)

On the numerical search for singularity:
Grauer and Sideris (1991): first numerical study of axisymmetric
flows with swirl; blowup reported away from the axis
Pumir and Siggia (1992): axisymmetric flows with swirl; blowup
reported away from the axis
Kerr (1993): antiparallel vortex tubes; blowup reported
E and Shu (1994): 2D Boussinesq; no blowup observed
Boratav and Pelz (1994): viscous simulations using Kida’s
high-symmetry initial condition; blowup reported
Grauer et al. (1998): perturbed vortex tube; blowup reported
Hou and Li (2006): use Kerr’s two anti-parallel vortex tube initial
data with higher resolution; no blowup observed
Orlandi and Carnevale (2007): Lamb dipoles; blowup reported

Evidence for blowup is inconclusive and problem remains open
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Numerical evidence of Euler singularity

In 1993 (and 2005), R. Kerr [Phys. Fluids] presented numerical evidence
of 3D Euler singularity for two anti-parallel vortex tubes:

Pseudo-spectral in x and y , Chebyshev in z direction;

Best resolution: 512× 256× 192;

Predicted singularity time T = 18.7, but his numerical solutions
became under-resolved after T1 = 17.

‖ω‖L∞ ≈ (T − t)−1; ‖u‖L∞ ≈ (T − t)−1/2;

Anisotropic scaling: (T − t)×
√

T − t ×
√

T − t;

Vortex lines: relatively straight, |∇ξ| ≈ (T − t)−1/2;

It is important to emphasize that T −T1 = 1.7 is not asymptotically
small. Thus the extrapolated blow-up rate of ‖ω‖L∞ ≈ (T − t)−1 is
not valid asymptotically from T1 to T . This makes the claim∫ T

T1
‖ω‖∞dt =∞ questionable.

Kerr’s computation falls into the critical case of Deng-Hou-Yu’s
non-blowup criterion with A = B = 1/2.
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Computation of Hou and Li, J. Nonlinear Science, 2006

Figure: Two slightly perturbed antiparallel vortex tubes at t=0 and t=6
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Figure: The local 3D vortex structures and vortex lines around the maximum
vorticity at t = 17 with resolution 1536× 1024× 3072.
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Maximum velocity in time
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Figure: Maximum velocity ‖u‖∞ in time using different resolutions. With
maximum velocity being bounded, the non-blowup criterion of Deng-Hou-Yu
applies with A = 0 and B = 1/2, implying no blowup at least up to T = 19.
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Dynamic depletion of vortex stretching
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Figure: Study of the vortex stretching term in time, resolution
1536× 1024× 3072. The fact |ξ · ∇u · ω| ≤ c1|ω| log |ω| plus
D
Dt
|ω| = ξ · ∇u · ω implies |ω| bounded by doubly exponential.
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Log log plot of maximum vorticity in time
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Figure: The plot of log log ‖ω‖∞ vs time, resolution 1536× 1024× 3072.
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Introduction

The role of convection in 3D Euler and Navier-Stokes

In [CPAM 08], Hou and Li studied the role of convection for 3D
axisymmetric flow and introduced the following new variables:

u1 = uθ/r , ω1 = ωθ/r , ψ1 = ψθ/r , (1)

and derived the following equivalent system that governs the dynamics
of u1, ω1 and ψ1 as follows:





∂tu1 + ur∂r u1 + uz∂zu1 = ν
(
∂2

r + 3
r ∂r + ∂2

z
)
u1 + 2u1ψ1z ,

∂tω1 + ur∂rω1 + uz∂zω1 = ν
(
∂2

r + 3
r ∂r + ∂2

z
)
ω1 +

(
u2

1
)

z ,

−
(
∂2

r + 3
r ∂r + ∂2

z
)
ψ1 = ω1,

(2)

where ur = −rψ1z , uz = 2ψ1 + rψ1r .

Liu and Wang [SINUM07] showed that if u is a smooth velocity field,
then uθ, ωθ and ψθ must satisfy: uθ

∣∣
r=0 = ωθ

∣∣
r=0 = ψθ

∣∣
r=0 = 0. Thus

u1, ψ1 and ω1 are well defiend.
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Introduction

An exact 1D model for 3D Euler/Navier-Stokes

In [Hou-Li, CPAM, 61 (2008), no. 5, 661–697], we derived an excact
1D model along the z-axis for the Navier-Stokes equations:

(u1)t + 2ψ1 (u1)z = ν(u1)zz + 2 (ψ1)z u1, (3)

(ω1)t + 2ψ1 (ω1)z = ν(ω1)zz +
(

u2
1

)
z
, (4)

−(ψ1)zz = ω1. (5)

Let ũ = u1, ṽ = −(ψ1)z , and ψ̃ = ψ1. The above system becomes

(ũ)t + 2ψ̃(ũ)z = ν(ũ)zz − 2ṽ ũ, (6)
(ṽ)t + 2ψ̃(ṽ)z = ν(ṽ)zz + (ũ)2 − (ṽ)2 + c(t), (7)

where ṽ = −(ψ̃)z , ṽz = ω̃, and c(t) is an integration constant to
enforce the mean of ṽ equal to zero.

Thomas Y. Hou (ACM, Caltech) Finite-Time Singularity of 3D Euler Taida, 2015 7 / 65



Introduction

The 1D model is exact!

A surprising result is that the above 1D model is exact.

Theorem 1. Let u1, ψ1 and ω1 be the solution of the 1D model
(3)-(5) and define

uθ(r , z, t) = ru1(z, t), ωθ(r , z, t) = rω1(z, t), ψθ(r , z, t) = rψ1(z, t).

Then (uθ(r , z, t), ωθ(r , z, t), ψθ(r , z, t)) is an exact solution of the
3D Navier-Stokes equations.

Theorem 1 tells us that the 1D model (3)-(5) preserves some essential
nonlinear structure of the 3D axisymmetric Navier-Stokes equations.
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Introduction

Global Well-Posedness of the full 1D Model

Theorem 2. Assume that ũ(z,0) and ṽ(z,0) are in Cm[0,1] with m ≥ 1
and periodic with period 1. Then the solution (ũ, ṽ) of the 1D model
will be in Cm[0,1] for all times and for ν ≥ 0.

Proof. Differentiating the ũ and ṽ -equations w.r.t z, we get

(ũz)t + 2ψ̃(ũz)z − 2ṽ ũz = −2ṽ ũz − 2ũṽz + ν(ũz)zz ,

(ṽz)t + 2ψ̃(ṽz)z − 2ṽ ṽz = 2ũũz − 2ṽ ṽz + ν(ṽz)zz .

The convection term cancels one of the nonlinear terms.

(ũ2
z )t + 2ψ̃(ũ2

z )z = −4ũũz ṽz + 2νũz(ũz)zz , (8)
(ṽ2

z )t + 2ψ̃(ṽ2
z )z = 4ũũz ṽz + 2νṽz(ṽz)zz . (9)

Another cancelltion occurs, which gives rise to
(

ũ2
z + ṽ2

z

)
t

+ 2ψ̃
(

ũ2
z + ṽ2

z

)
z

= ν
(

ũ2
z + ṽ2

z

)
zz
− 2ν

[
(ũzz)2 + (ṽzz)2

]
.
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Introduction

Construction of a family of globally smooth solutions

Theorem 3. Let φ(r) be a smooth cut-off function and u1, ω1 and ψ1 be
the solution of the 1D model. Define

uθ(r , z, t) = ru1(z, t)φ(r) + ũ(r , z, t),
ωθ(r , z, t) = rω1(z, t)φ(r) + ω̃(r , z, t),
ψθ(r , z, t) = rψ1(z, t)φ(r) + ψ̃(r , z, t).

Then there exists a family of globally smooth functioons ũ, ω̃ and ψ̃
such that uθ, ωθ and ψθ are globally smooth solutions of the 3D
Navier-Stokes equations with finite energy.
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A New 3D Model for NSE, [Hou-Lei, CPAM, 09]

Recall the reformulated 3D Navier-Stokes equations:
∂tu1 + ur∂ru1 + uz∂zu1 = ν

(
∂2
r + 3

r ∂r + ∂2
z

)
u1 + 2u1ψ1z ,

∂tω1 + ur∂rω1 + uz∂zω1 = ν
(
∂2
r + 3

r ∂r + ∂2
z

)
ω1 +

(
u2

1

)
z
,

−
(
∂2
r + 3

r ∂r + ∂2
z

)
ψ1 = ω1,

(18)

where ur = −rψ1z , uz = 2ψ1 + rψ1r . Our 3D model is derived by simply
dropping the convective term from (18):

∂tu1 = ν
(
∂2
r + 3

r ∂r + ∂2
z

)
u1 + 2u1ψ1z ,

∂tω1 = ν
(
∂2
r + 3

r ∂r + ∂2
z

)
ω1 + (u2

1)z ,

−
(
∂2
r + 3

r ∂r + ∂2
z

)
ψ1 = ω1.

(19)

Note that (19) is already a closed system, and u1 = uθ/r characterizes
the axial vorticity near r = 0.
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Properties of the 3D Model [Hou-Lei, CPAM, 09]

This 3D model shares many important properties with the axisymmetric
Navier-Stokes equations.

First of all, one can define an incompressible velocity field in the model
equations (19).

u(t, x) = ur (t, r , z)er + uθ(t, r , z)eθ + uz(t, r , z)ez , (20)

uθ = ru1, ur = −rψ1z , uz = 2ψ1 + rψ1r , (21)

where x = (x1, x2, z), r =
√

x2
1 + x2

2 . It is easy to check that

∇ · u = ∂ru
r + ∂zuz +

ur

r
= 0, (22)

which is the same as the Navier-Stokes equations.
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Properties of the 3D Model–continued

Our model enjoys the following properties ([Hou-Lei, CPAM-09]):

Theorem 5. Energy identity. The smooth solution of (19) satisfies

1

2

d

dt

∫ (
|u1|2 + 2|Dψ1|2

)
r 3drdz + ν

∫ (
|Du1|2 + 2|D2ψ1|2

)
r 3drdz = 0,

which has been proved to be equivalent to that of the Navier-Stokes
equations. Here D is the first order derivative operator defined in R5.

Theorem 6. A non-blowup criterion of Beale-Kato-Majda type. A
smooth solution (u1, ω1, ψ1) of the model (19) for 0 ≤ t < T blows up at
time t = T if and only if∫ T

0

‖∇ × u‖BMO(R3)dt =∞,

where u is defined in (20)-(21).
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Properties of the 3D Model–continued

Theorem 7. A non-blowup criterion of Prodi-Serrin type. A weak
solution (u1, ω1, ψ1) of the model (19) is smooth on [0,T ]× R3 provided
that

‖uθ‖Lq
t L

p
x ([0,T ]×R3) <∞ (23)

for some p, q satisfying 3
p + 2

q ≤ 1 with 3 < p ≤ ∞ and 2 ≤ q <∞.

Theorem 8. An analog of Caffarelli-Kohn-Nirenberg partial
regularity result [Hou-Lei, CMP-09]. For any suitable weak solution of
the 3D model equations (19) on an open set in space-time, the
one-dimensional Hausdorff measure of the associated singular set is zero.
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Numerical evidence for a potential finite time singularity

Innitial condition we consider in our numerical computations is given by

u1(z , r , 0) = (1 + sin(4πz))(r 2 − 1)20(r 2 − 1.2)30, 0 ≤ r ≤ 1,

ψ1(z , r , 0) = 0,

ω1(z , r , 0) = 0.

A second order finite difference discretization is used in space, and the
classical fourth order Runge-Kutta method is used to discretize in time.
We use the following coordinate transformation along the r -direction to
achieve the adaptivity:

r = f (α) ≡ α− 0.9 sin(πα)/π.

We use an effective resolution up to 40963 for the 3D problem.
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A 3D view of u1 at t = 0.02.
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A 3D view of u1 at t = 0.021.
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Asymptotic blowup fit: ‖u1‖−1
∞ ≈

(T−t)
C , with limiting

values T = 0.021083 and C = 8.1901.
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Asymptotic blowup rate: ‖u1‖∞ ≈ C
(T−t) , with

T = 0.02109 and C = 8.20348.
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Local alignment of u1 and ψ1z at t = 0.02. Recall
(u1)t = 2u1ψ1z + ν∆u1, (ω1)t = (u2

1)z + ν∆ω1.
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Local alignment of u1 and ψ1z at t = 0.021.

0.25 0.3 0.35 0.4 0.45 0.5
−4

−2

0

2

4

6

8

10
x 10

4 u
1
 vs (ψ

1
)
z
 at r=0, t=0.021, N

z
=4096, N

r
=400, ∆t=2.5×10−7, ν=0.001

z

 

 
u

1

(ψ
1
)
z

T. Y. Hou, Applied Mathematics, Caltech On Global Regularity of 3D NSE



The effect of convection.

To study the effect of convection, we add the convection term back to
the 3D model and solve the Navier-Stokes equations using the solution of
the 3D model at t = 0.02 as the initial condition.
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Contours of initial data for u1.

Contour of u
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Contours of u1 at t = 0.021, solution of full NSE.
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Contours of u1 at t = 0.0235, solution of full NSE.
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Recent theortical progress for the 3D model

Theorem 9. [Hou-Shi-Wang, 12]. Consider the 3D inviscid model{
ut = 2uψz , ωt = (u2)z ,

−
(
∂2
x + ∂2

y + ∂2
z

)
ψ = ω, 0 ≤ x , y , z ≤ 1,

(24)

with boundary condition ψ = 0 at x = 0, 1, y = 0, 1, z = 1, and
(α∂ψ∂z + ψ)|z=0 = 0 for some 0 < α < 1. If the initial conditions, u0 and
ψ0, are smooth, satisfying u0 = 0 at z = 0, 1, and∫

[0,1]3

log(u0)φ(x , y , z)dxdydz ≥ 0,

∫
[0,1]3

(ψ0)zφ(x , y , z)dxdydz > 0,

where φ(x , y , z) = sin(x) sin(y) cosh(α(1− z)), then the 3D inviscid
model must develop a finite time singularity. Moreover, if the ω-equation
is viscous and ω satisfies the same boundary condition as ψ, then the 3D
model with partial viscosity must develop a finite time singularity.
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Global regularity for a class of initial-boundary data

Let v = ψz , we can rewrite the 3D model as follows:{
ut = 2uv

−∆vt = (u2)zz
, (x , z) ∈ Ω = [0, δ]3. (25)

The initial and boundary conditions are given as follows:

v |∂Ω = −4, v(x , y , z , 0) = v0(x , y , z), u(x , y , z , 0) = u0(x , y , z). (26)

Theorem 10. Assume u2
0 , v0 ∈ Hm(Ω) for m ≥ 2 and v0 ≤ −4 for

x ∈ Ω, then the solution of the 3D model remains smooth for all times as
long as the following holds

max (4Cm, 1)
(
‖v0‖Hm + Cm‖u2

0‖Hm

)
δ < 1, (27)

where Cm is a Sobolev interpolation constant.

T. Y. Hou, Applied Mathematics, Caltech On Global Regularity of 3D NSE



Introduction

Potential singularity for 3D Euler equation

Inspired by the previous study, we discover a class of initial data
that lead to potentially singular solutions of 3D Euler equations.
Main features of our study:

the singularity occurs at a stagnation point where the effect of
convection is minimized.

strong symmetry (axisymmetry plus odd/even symmetry in z)

devises highly effective algorithms for adequate resolution

employs rigorous criteria for confirmation of singularity
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Introduction

Vorticity Kinematics

z = 0

z =
1

4
L

z = −

1

4
L

Figure : Vorticity kinematics of the 3D Euler singularity; solid: vortex lines;
straight dashed lines: axial flow; curved dash lines: vortical circulation.
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Introduction

Local Flow Field

r_l 1

0

z_r
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ũ = (ur, uz) near q̃0 on 10242 mesh, t = 0.003505

zr = 2.09 × 10−12

rl = 1 − 5.99 × 10−12

Figure : The 2D flow field ũ = (ur ,uz)T near the maximum vorticity.
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Numerical Method Overview

Outline

1 Introduction

2 Numerical Method
Overview
The Adaptive (Moving) Mesh Algorithm

3 Numerical Results
Effectiveness of the Adaptive Mesh
First Sign of Singularity
Confirming the Singularity I: Maximum Vorticity
Confirming the Singularity IV: Local Self-Similarity
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Numerical Method Overview

3D Axisymmetric Euler Equations

Equations being solved: the 3D axisymmetric Euler (Hou-Li, 2008)

u1,t + ur u1,r + uzu1,z = 2u1ψ1,z ,

ω1,t + urω1,r + uzω1,z = (u2
1)z ,

−
[
∂2

r + 3
r ∂r + ∂2

z
]
ψ1 = ω1,

where u1 = uθ/r , ω1 = ωθ/r , ψ1 = ψθ/r .
ur = −rψ1,z , uz = 2ψ1 + rψ1,r : the radial/axial velocity components.

Initial condition:
u1(r , z,0) = 100e−30(1−r2)4

sin
( 2πz

L

)
, ω1(r , z,0) = ψ1(r , z,0) = 0.

No flow boundary condition ψ1 = 0 at r = 1 and periodic BC in z.
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Numerical Method Overview

Outline of the Method

Discretization in space: a hybrid 6th-order Galerkin and 6th-order
finite difference method, on an adaptive (moving) mesh that is
dynamically adjusted to the evolving solution
Discretization in time: an explicit 4th-order Runge-Kutta method,
with an adaptively chosen time step
Solution advanced indefinitely in time until either

the time step drops below 10−12, or
the minimum mesh spacing in r drops below εr = 10−15, or
the minimum mesh spacing in z drops below εz = 10−15L,

whichever happens first
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Numerical Method The Adaptive (Moving) Mesh Algorithm
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Numerical Method The Adaptive (Moving) Mesh Algorithm

Adaptive Methods for Singularity Detection

Existing methods for computing (self-similar) singularities:
dynamic rescaling (McLaughlin et al. 1986: nonlinear
Schrödinger)
adaptive mesh refinement (Berger and Kohn 1988: semilinear
heat)
moving mesh method (Budd et al. 1996: semilinear heat; Budd et
al. 1999: nonlinear Schrödinger)

However, these methods require knowledge of the singularity
discrete approximation of mesh mapping functions can result in
significant loss of accuracy
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Numerical Method The Adaptive (Moving) Mesh Algorithm

Our Approach: Defining the Adaptive Mesh

We observe that vorticity tends to concentrate at a single point in
the rz-plane.
This motivates the development of the following special mesh
adaptation strategy.
The adaptive mesh covering the computational domain is
constructed from a pair of analytic mesh mapping functions:

r = r(ρ), z = z(η),

where each mesh mapping function contains a small number of
parameters, which are dynamically adjusted so that along each
dimension a certain fraction (e.g. 50%) of the mesh points is placed in
a small neighborhood of the singularity
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Numerical Method The Adaptive (Moving) Mesh Algorithm

Advancing the Solution

The Poisson equation for ψ1 is solved in the ρη-space using a 6th
order B-spline based Galerkin method.
The evolutionary equations for u1 and ω1 are semi-discretized in
the ρη-space, where

the space derivatives are expressed in the ρη-coordinates and are
approximated using 6th-order centered difference scheme, e.g.

vr ,ij =
vρ,ij
rρ,j
≈ 1

rρ,j
(D6

ρ,0vi )j

the resulting system of ODEs is integrated in time using an explicit
4th-order Runge-Kutta method
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Numerical Results Effectiveness of the Adaptive Mesh
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Numerical Results Effectiveness of the Adaptive Mesh

Effectiveness of the Adaptive Mesh
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Figure : The vorticity function |ω| on the 1024× 1024 mesh at t = 0.003505;
plot shown in rz-coordinates with 1 : 10 sub-sampling in each dimension.
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Numerical Results Effectiveness of the Adaptive Mesh

Effectiveness of the Adaptive Mesh (Cont’d)
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Figure : The vorticity function |ω| on the 1024× 1024 mesh at t = 0.003505;
plot shown in ρη-coordinates with 1 : 10 sub-sampling in each dimension.

Thomas Y. Hou (ACM, Caltech) Finite-Time Singularity of 3D Euler Taida, 2015 23 / 65



Numerical Results Effectiveness of the Adaptive Mesh

Effective Mesh Resolutions

Table : Effective mesh resolutions M∞, N∞ near the maximum vorticity at
selected time t .

t = 0.003505
Mesh size

M∞ N∞

1024× 1024 1.9923× 1012 1.6708× 1012

1280× 1280 2.4999× 1012 2.0844× 1012

1536× 1536 2.9866× 1012 2.5079× 1012

1792× 1792 3.4951× 1012 2.9288× 1012

2048× 2048 3.9942× 1012 3.3444× 1012
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Numerical Results Effectiveness of the Adaptive Mesh

Backward Error Analysis of the Linear Solve

Table : Backward errors of the linear solve Ax = b associated with the elliptic
equation for ψ1 at t = 0.003505.

t = 0.003505
Mesh size

ω1 κω1 ω2 κω2 ‖δx‖∞/‖x‖∞

512 5.9× 10−15 1247.3 1.9× 10−23 2.3× 107 7.3× 10−12

768 1.1× 10−15 1788.84 2.1× 10−23 5.2× 107 1.9× 10−12

1024 1.5× 10−15 6748.83 6.4× 10−23 9.3× 107 9.9× 10−12

The linear system is solved using a parallel sparse direct solver called
PaStiX package. Here ω1, ω2 are the componentwise backward errors
of first and second kind, and κω1 , κω2 are the componentwise condition
numbers of first and second kind. It can be shown that (Arioli 1989)
‖δx‖∞
‖x‖∞ ≤ ω1κω1 + ω2κω2 .
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Numerical Results First Sign of Singularity
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Numerical Results First Sign of Singularity

Maximum Vorticity

Table : Maximum vorticity ‖ω‖∞ = ‖∇ × u‖∞ at selected time t .

‖ω‖∞
Mesh size

t = 0 t = 0.0034 t = 0.003505

1024× 1024 3.7699× 103 4.3127× 106 1.2416× 1012

1280× 1280 3.7699× 103 4.3127× 106 1.2407× 1012

1536× 1536 3.7699× 103 4.3127× 106 1.2403× 1012

1792× 1792 3.7699× 103 4.3127× 106 1.2401× 1012

2048× 2048 3.7699× 103 4.3127× 106 1.2401× 1012
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Numerical Results First Sign of Singularity

Maximum Vorticity (Cont’d)
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Figure : The double logarithm of the maximum vorticity, log(log‖ω‖∞),
computed on the 1024× 1024 and the 2048× 2048 mesh.
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Numerical Results First Sign of Singularity

Resolution Study on Primitive Variables

Table : Sup-norm relative error and numerical order of convergence of the
transformed primitive variables u1 at selected time t .

t = 0.003505
Mesh size

Error Order

1024× 1024 9.4615× 10−6 −
1280× 1280 3.6556× 10−6 4.2618
1536× 1536 1.5939× 10−6 4.5526
1792× 1792 7.5561× 10−7 4.8423

Sup-norm 1.0000× 102 −
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Numerical Results First Sign of Singularity

Resolution Study on Primitive Variables (Cont’d)

Table : Sup-norm relative error and numerical order of convergence of the
transformed primitive variables ω1 at selected time t .

t = 0.003505
Mesh size

Error Order

1024× 1024 6.4354× 10−4 −
1280× 1280 2.4201× 10−4 4.3829
1536× 1536 1.1800× 10−4 3.9396
1792× 1792 6.4388× 10−5 3.9297

Sup-norm 1.0877× 106 −

Thomas Y. Hou (ACM, Caltech) Finite-Time Singularity of 3D Euler Taida, 2015 30 / 65



Numerical Results First Sign of Singularity

Resolution Study on Primitive Variables (Cont’d)

Table : Sup-norm relative error and numerical order of convergence of the
transformed primitive variables ψ1 at selected time t .

t = 0.003505
Mesh size

Error Order

1024× 1024 2.8180× 10−10 −
1280× 1280 4.7546× 10−11 7.9746
1536× 1536 1.0873× 10−11 8.0925
1792× 1792 2.9518× 10−12 8.4583

Sup-norm 2.1610× 10−1 −
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Numerical Results First Sign of Singularity

Resolution Study on Conserved Quantities

Table : Kinetic energy E , minimum circulation Γ1, maximum circulation Γ2 and
their maximum (relative) change over [0,0.003505].

t = 0.003505
Mesh size

‖δE‖∞,t ‖δΓ1‖∞,t ‖δΓ2‖∞,t
1024× 1024 1.53× 10−11 4.35× 10−17 1.25× 10−14

1280× 1280 4.17× 10−12 3.30× 10−17 7.78× 10−15

1536× 1536 2.08× 10−12 3.13× 10−17 9.95× 10−15

1792× 1792 6.47× 10−13 2.77× 10−17 2.14× 10−14

2048× 2048 6.66× 10−13 2.53× 10−17 3.49× 10−14

Init. value 55.93 0.00 628.32
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Numerical Results Confirming the Singularity I: Maximum Vorticity
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Numerical Results Confirming the Singularity I: Maximum Vorticity

The Beale-Kato-Majda (BKM) Criterion

The main tool for studying blowup/non-blowup: the
Beale-Kato-Majda (BKM) criterion (Beale et al. 1984)

Theorem
Let u be a solution of the 3D Euler equations, and suppose there is a
time ts such that the solution cannot be continued in the class

u ∈ C([0, t ]; Hm) ∩ C1([0, t ]; Hm−1), m ≥ 3

to t = ts. Assume that ts is the first such time. Then
∫ ts

0
‖ω(·, t)‖∞ dt =∞, ω = ∇× u.
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the BKM Criterion

The “standard” approach to singularity detection:
1 assume the existence of an inverse power-law

‖ω(·, t)‖∞ ∼ c(ts − t)−γ , c, γ > 0

2 estimate ts and γ using a line fitting:

[
d
dt

log‖ω(·, t)‖∞
]−1

∼ 1
γ

(ts − t)

3 estimate c using another line fitting:

log‖ω(·, t)‖∞ ∼ −γ log(̂ts − t) + log c,

where t̂s is the singularity time estimated in step 2
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Our Criteria

Our criteria for choosing the fitting interval [τ1, τ2]:
τ2 is the last time at which the solution is still “accurate”

choose the fitting interval [τ1, τ2] in the asymptotic regime.

Our criteria for a successful line fitting:
both τ2 and the line-fitting predicted singularity time t̂s converge to
the same finite value as the mesh is refined; the convergence
should be monotone, i.e. τ2 ↑ ts, t̂s ↓ ts

τ1 converges to a finite value that is strictly less than ts as the mesh
is refined

Thomas Y. Hou (ACM, Caltech) Finite-Time Singularity of 3D Euler Taida, 2015 36 / 65



Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: Computing the Line Fitting
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Figure : Inverse logarithmic time derivative
[ d

dt log‖ω‖∞
]−1 and its line fitting
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1 (̂ts − t), computed on the 2048× 2048 mesh.
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: Computing the Line Fitting
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: Computing the Line Fitting
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computed on the 2048× 2048 mesh.

Thomas Y. Hou (ACM, Caltech) Finite-Time Singularity of 3D Euler Taida, 2015 39 / 65



Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: the “Best” Fitting Interval

Table : The “best” fitting interval [τ1, τ2] and the estimated singularity time t̂s.

Mesh size τ1 τ2 t̂s

1024× 1024 0.003306 0.003410 0.0035070
1280× 1280 0.003407 0.003453 0.0035063
1536× 1536 0.003486 0.003505 0.0035056
1792× 1792 0.003479 0.003505 0.0035056
2048× 2048 0.003474 0.003505 0.0035056
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Applying the Ideas: Results of the Line Fitting

Table : The best line fittings for ‖ω‖∞ computed on [τ1, τ2].

Mesh size γ̂†1 γ̂‡2 ĉ

1024× 1024 2.5041 2.5062 4.8293× 10−4

1280× 1280 2.4866 2.4894 5.5362× 10−4

1536× 1536 2.4544 2.4559 7.4912× 10−4

1792× 1792 2.4557 2.4566 7.4333× 10−4

2048× 2048 2.4568 2.4579 7.3273× 10−4

†: γ̂1 is computed from
[ d

dt log‖ω‖∞
]−1 ∼ γ−1(ts − t).

‡: γ̂2 is computed from log‖ω‖∞ ∼ −γ log(̂ts − t) + log c.

Conclusion: the maximum vorticity develops a singularity
‖ω‖∞ ∼ c(ts − t)−γ at ts ≈ 0.0035056 (recall te ≈ 0.00350555)
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Comparison with Other Numerical Studies

Table : Comparison of our results with other numerical studies. K: Kerr
(1993); BP: Boratav and Pelz (1994); GMG: Grauer et al. (1998); OC: Orlandi
and Carnevale (2007); τ2: the last time at which the solution is deemed “well
resolved”.

Studies τ2 ts Effec. res. Vort. amp.

K 17 18.7 ≤ 5123 23
BP 1.6† 2.06 10243 180

GMG 1.32 1.355 20483 21
OC 2.72 2.75 10243 55

Ours 0.003505 0.0035056 (3× 1012)2 3× 108

†: According to Hou and Li (2008).
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Nonlinear alignment of vortex stretching

The vorticity direction ξ = ω/|ω| could also play a role!
Recall the vorticity equation

|ω|t + u · ∇|ω| = α|ω|,

where α = ξ · ∇u · ξ is the vorticity amplification factor

α = ξ · ∇u · ξ = ξ · Sξ, S =
1
2
(
∇u +∇uT ),

thus the growth of α depends on the eigenstructure of S
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Spectral Dynamics

Due to symmetry, S has
3 real eigenvalues {λi}3

i=1 (assuming λ1 ≥ λ2 ≥ λ3), and
a complete set of orthogonal eigenvectors {wi}3

i=1

We discover, at the location of the maximum vorticity, that:
the vorticity direction ξ is perfectly aligned with w2, i.e.

λ2 = α =
d
dt

log‖ω‖∞ ∼ c2(ts − t)−1

the largest positive/negative eigenvalues satisfy

λ1,3 ∼ ±
1
2
‖ω‖∞ ∼ ±c(ts − t)−2.457
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Numerical Results Confirming the Singularity I: Maximum Vorticity

The DHY Non-blowup Criterion

Essential ideas of DHY: no blowup if, among other things,
the divergence of ξ, ∇ · ξ, and
the curvature κ = |ξ · ∇ξ|,

along a vortex line do not grow “too fast” compared with the
“diminishing rate” of the length of the vortex line
Similar in spirit to CFM but more localized
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Checking Against the DHY Criterion
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of the maximum vorticity.
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Numerical Results Confirming the Singularity I: Maximum Vorticity

Geometry of the Vorticity Direction (Cont’d)
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Figure : The z-component ξz of the vorticity direction ξ near the maximum
vorticity. Note the rapid variation of ξz in z.
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Numerical Results Confirming the Singularity IV: Local Self-Similarity
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Locally Self-Similar Solutions

Solutions of the 3D Euler equations in R3 have special scaling
properties:

u(x , t) −→ λαu(λx , λα+1t), λ > 0, α ∈ R

Can this give rise to a (locally) self-similar blowup?

∇u(x , t) ∼ 1
ts − t

∇U
(

x − x0

[ts − t ]β

)
, x ∈ R3

Recent results by D. Chae (2007,2010,2011) seem to give a
negative answer under some strong (exponential) decay
assumption on the self-similar profile ∇U.
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Self-Similar Solutions with Axis-Symmetry

In axisymmetric flows, self-similar solutions naturally take the form

u1(x̃ , t) ∼ (ts − t)γu U
(

x̃ − x̃0

`(t)

)
,

ω1(x̃ , t) ∼ (ts − t)γωΩ

(
x̃ − x̃0

`(t)

)
,

ψ1(x̃ , t) ∼ (ts − t)γψΨ

(
x̃ − x̃0

`(t)

)
, x̃ → x̃0, t → t−s ,

where x̃ = (r , z)T and `(t) ∼ [δ−1(ts − t)]γ` is a length scale, and
the exponents satisfy

γω = −1, γψ = −1 + 2γ`, γu = −1 +
1
2
γ`.

This would give rise to ‖∇u(·, t)‖∞ ∼ c(ts − t)γu−γ` .
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Identifying a Self-Similar Solution

We remark that the recent result of Chae-Tsai on non-existence of
self-similar solutions of 3D axisymmetric Euler does not apply to
our solution since they assume |U(ξ)| → 0 as |ξ| → ∞.

In our case, we found that U(0) = Ψ(0) = Ω(0) = 0, and
|U(ξ)| ≈ c0|ξ|β for some 0 < β < 1 as |ξ| → ∞, where β satisfies
γu = γ`β with γu > 0 and γ` > 0. This gives u(1, z, ts) ≈ c0zβ at
the singularity time.

To identify a “self-similar neighborhood”, consider

C∞(t) =
{

(r , z) ∈ D : |ω(r , z, t)| = 1
2‖ω(·, t)‖∞

}
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Existence of Self-Similar Neighborhood
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Existence of Self-Similar Neighborhood (Cont’d)
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Existence of Self-Similar Neighborhood (Cont’d)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r̃

z̃

rescaled level curves of 1
2‖ω‖∞ on 20482 mesh

zoom in
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2‖ω‖∞.
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

The Scaling Exponents

Table : Scaling exponents of `, u1, ω1, and ψ1.

Mesh size γ̂` γ̂u γ̂ω γ̂ψ

1024× 1024 2.7359 0.4614 −0.9478 4.7399
1280× 1280 2.9059 0.4629 −0.9952 4.8683
1536× 1536 2.9108 0.4600 −0.9964 4.8280
1792× 1792 2.9116 0.4602 −0.9966 4.8294
2048× 2048 2.9133 0.4604 −0.9972 4.8322

γ` ≥ 1: consistent with the a posteriori bound ‖u‖∞ ≤ C
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Numerical Results Confirming the Singularity IV: Local Self-Similarity

Consistency Check

Table : Consistency check for the scaling exponents.

Mesh size −1 + 1
2 γ̂` −1 + 2γ̂` γ̂u − γ̂`

1024× 1024 0.3679 4.4717 −2.2745
1280× 1280 0.4530 4.8118 −2.4430
1536× 1536 0.4554 4.8215 −2.4508
1792× 1792 0.4558 4.8232 −2.4514
2048× 2048 0.4567 4.8266 −2.4529

Ref. value γ̂u : 0.4604 γ̂ψ : 4.8322 γ̂1 : 2.4568

‖ω‖∞ ∼ c(ts − t)−2.45: consistent with Chae’s nonexistence results
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1D Models
One can rewrite the Euler equations as follows:

(r2u1)t + ur (r2u1)r + uz(r2u1)z = 0,
ω1,t + urω1,r + uzω1,z = (u2

1)z ,

−[∂2
r + (3/r)∂r + ∂2

z ]ψ1 = ω1.

The 1D models based on this new singularity formation scenario are
proposed and investigated by restricting the 3D Euler equations on r = 1:

wt(z , t) + u(z , t)wz(z , t) = θz(z , t),

θt(z , t) + u(z , t)θz(z , t) = 0,
where w = ω1, u = uz and θ = u2

1 . The above equations are exact and
can also be viewed as restriction of the Boussinesq equations on r = 1:

wt + u · ∇w = θz ,

θt + u · ∇θ = 0,
u = ∇Tφ, −∆φ = w .
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The Biot-Savart Laws
To close the 1D system, one needs appropriate Biot-Savart law that
connects the velocity u(z) to the vorticity w(z):

The Hou-Luo model [T.Y. Hou, G. Luo, 2013] preserves the
symmetry of the Euler equations:

uz(z) = Hw = P.V.12

∫ 1

−1
w(y) cot[

π

2 (z − y)]dy .

The Choi-Kiselev-Yao model [K.Choi, A. Kiselev, Y. Yao, 2014]
further simplifies the HL model:

u(z) = −z
∫ 1

z
w(y)/ydy .

One can verify that the CKY model is indeed a leading order
approximation to the HL model near the origin

uHL(z)− uCKY (z) = O(z2).
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Comparison between the 1D model and the 3D Euler
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1D Models-continued
The finite-time singularity of the CKY model is proved by Choi, Kiselev
and Yao [2014]. And the singularity of the HL model is proved very
recently by Choi, Hou, Luo, Sverak, Kiselev and Yao[2014].
Lemma 1 Let ω ∈ H1 be odd at z = 0 and let uz = H(ω) the velocity
field. Then for any z ∈ [0, L/2],

u(z) cot(µz) = − 1
π

∫ L/2

0
K (z , z ′)ω(z ′) cot(µz ′) dz ′, (1)

where µ = π/L and

K (x , y) = s log
∣∣∣∣s + 1
s − 1

∣∣∣∣ with s = s(x , y) =
tan(µy)

tan(µx)
. (2)

Furthermore, the kernel K (x , y) has the following properties:
1 K (x , y) ≥ 0 for all x , y ∈ (0, 1

2L) with x 6= y ;
2 K (x , y) ≥ 2 and Kx (x , y) ≥ 0 for all 0 < x < y < 1

2L;
3 K (x , y) ≥ 2s2 and Kx (x , y) ≤ 0 for all 0 < y < x < 1

2L.
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Blow-up of the 1D model

The main blow-up result is stated in the following theorem:
Theorem 1 (Choi, Hou, Kiselev, Luo, Sverak and Yao) For any initial data
ρ0 ∈ H2, ω0 ∈ H1 such that
(i) ρ0 is even and ω0 is odd at z = 0, 1

2L,
(ii) ρ0z , ω0 ≥ 0 on [0, 1

2L], and

(iii)
∫ L/2

0
[
ρ0(z)− ρ0(0)

]2 dz > 0, then the solution of the 1D model
develops a singularity in finite time.

One can show that the solution of the 1D model satisfies:
1 ρ is even and ω, u are odd at z = 0, 1

2L for all t ≥ 0;
2 ρz , ω ≥ 0 and u ≤ 0 on [0, 1

2L] for all t ≥ 0.

Thomas Y. Hou (Caltech) Self-similar Singularity November 2, 2015 11 / 50



Sketch of the proof – continued
To prove the finite-time blowup, we define

I(t) :=

∫ L/2

0
ρ(z , t) cot(µz) dz . (3)

and obtain
d
dt I(t) = −

∫ L/2

0
u(x)ρx (x) cot(µx) dx

=
1
π

∫ L/2

0
ρx (x)

∫ L/2

0
ω(y) cot(µy)K (x , y) dy dx ,

where we have used the representation formula (1) from Lemma 1.

By the assumption on the initial data, we have ρx , ω ≥ 0 on [0, 1
2L].

Moreover, from Lemma 1, we have K ≥ 0 for y < x , and K ≥ 2 for y > x .
Thus, we get

d
dt I(t) ≥ 2

π

∫ L/2

0
ρx (x)

∫ L/2

x
ω(y) cot(µy) dy dx .
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Sketch of the proof – continued

It remains to find a lower bound for the right hand side, which involves
some delicate dynamic estimates using the w -eqn. We can show that

d
dt I(t) ≥ 2

π

∫ t

0

∫ L/2

0
ρy (y , s) cot(µy)

∫ ζ̃(t)

0
ρx (x , t) dx dy ds

=
2
π

∫ t

0

∫ L/2

0
(ρρy )(y , s) cot(µy) dy ds

=
µ

π

∫ t

0

∫ L/2

0
ρ2(y , s) csc2(µy) dy ds

≥ µ

π

∫ t

0

∫ L/2

0
ρ2(y , s) cot2(µy) dy ds

≥ 2µ
πL

∫ t

0

(∫ L/2

0
ρ(y , s) cot(µy) dy

)2

ds =
2
L2

∫ t

0
I2ds.
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Self-similar Singularity

The two models enjoy the following scaling-invariant property, which is the
same as the Euler equations

w(x , t)→ 1
µ

w(
x
λ
,

t
µ

), u(x , t)→ λ

µ
u(

x
λ
,

t
µ

), θ(x , t)→ λ

µ2 θ(
x
λ
,

t
µ

).

And their singular solutions both develop self-similar structure around their
singularity points. We make the following self-similar ansatz:

w(z , t) ≈ (T − t)cw W (
z

(T − t)cl
),

θ(z , t) ≈ (T − t)cθ Θ(
z

(T − t)cl
),

u(z , t) ≈ (T − t)cu U(
z

(T − t)cl
).
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Self-similar Equations

Plugging the ansatz of the solutions into the equations and matching the
exponents of the (T − t), we get

cw = −1, cu = cl − 1, cθ = cl − 2,

and the following self-similar equations that govern the profiles W (ξ),
U(ξ) and Θ(ξ) in the singular solutions,

W (ξ) + clξWξ(ξ) + U(ξ)Wξ(ξ) = Θξ(ξ),

(2− cl )Θ(ξ) + clξΘξ(ξ) + U(ξ)Θξ(ξ) = 0.

The Biot-Savart laws become

UHL(ξ) =
1
π

∫ ∞
0

ln
∣∣∣∣ξ − ηξ + η

∣∣∣∣W (η)dη, UCKY (ξ) = −ξ
∫ ∞
ξ

W (η)

η
dη.
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Self-similar Equations-continued

The self-similar singularity of the two 1D models are of the second
kind, since the scaling exponent cl cannot be simply determined by
symmetry or the conservation of energy.
Solving the self-similar equations is essentially a nonlinear
eigenvalue problem. Namely, one needs to find the scaling exponent
cl such that the equations have non-trivial solutions.
The self-similar equations have non-linear and non-local features,
which make the problem difficult to solve.
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2 Existence of CKY Self-similar Singularity

3 Stability of the Self-similar Profiles

4 Concluding Remarks and Future Work
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Self-similar Equations for the CKY Model

The Biot-Savart law in the CKY model

UCKY (ξ) = −ξ
∫ ∞
ξ

W (η)

η
dη

can be decomposed as a local relation with a global constraint(U(ξ)

ξ

)′
=

W (ξ)

ξ

lim
ξ→∞

U(ξ)

ξ
= 0.

This decomposition allows us to construct the profiles using the local
relation, and then determine cl using the global constraint.
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Construct Near-field Solution

Neglecting the global constraint in the Biot-Savart law, the self-similar
equations become an ODE system

Θ′(ξ) =
(cl − 2)Θ(ξ)

U(ξ) + clξ
,

W ′(ξ) =
(cl − 2)Θ(ξ)

(clξ + U(ξ))2 −
W (ξ)

clξ + U(ξ)
,(U(ξ)

ξ

)′
=

W (ξ)

ξ
.

The RHS of the above ODE system has a formal singularity at ξ = 0, so
the classical existence and uniqueness result does not apply.
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Construct Near-field Solution-continued
We use the power series method to construct local self-similar profiles

W (ξ) =
∞∑

i=1
Wiξ

i , U(ξ) =
∞∑

i=1
Uiξ

i , Θ(ξ) =
∞∑

i=s
Θiξ

i ,

where s is the leading order of Θ(ξ) at the origin. Plugging the power
series into the self-similar equations, we get the following:

(2− cl + scl + sU1)Θs = 0 −→ U1 =
(1− s)cl − 2

2 .

For k > s, cl > 2

Θk =
−
∑k−1

m=s Um(k −m + 1)Θk−m+1
(k/s − 1)(cl − 2)

,

Uk =
kΘk −

∑k−1
m=s Um(k −m)2Uk−m+1

(k − 1) + (cl/s − 2/s)(k − 1)2 .

Note that the denominators are positive, which we will come back to later.
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Near-field Solutions

We get the following conclusion for the near-field power series solutions:
For fixed cl > 2 and the leading order s ≥ 2, the power series can
actually be uniquely (up to re-scaling) determined.
Using a majorization argument, we get a quantitative estimates of the
coefficients and show that the power series converge on (0, ε). We
have W (ξ) > 0, U(ξ) < 0, Θ(ξ) > 0.

Remark 1 cθ = cl − 2, and θ is convected by the velocity thus cannot
blowup, so we require that cl > 2.

Remark 2 Since θ(z , t) is advected by the velocity field, the leading order
of θ(z , t) at z = 0, s, is preserved. We will see later in our numerical
results that s actually determines the profiles of the singular solutions.
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Extending the Local Self-similar Profiles
We consider extending the self-similar profiles by solving the nonlinear
ODE system. We get the following results.

The profile Θ(ξ) remain positive, according to

Θ′(ξ) =
(cl − 2)Θ(ξ)

U(ξ) + clξ
,

The profile W (ξ) remains positive, according to

W ′(ξ) =
(cl − 2)Θ(ξ)

(clξ + U(ξ))2 −
W (ξ)

clξ + U(ξ)
,

U(ξ)/ξ + cl is increasing and positive, according to(U(ξ)

ξ

)′
=

W (ξ)

ξ
.

Using the above a priori estimates, we can show that the local
self-similar profiles can be extended to the whole R+.
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The Global Constraint in the Biot-Savart Law

Recall that in our construction of the self-similar profiles, we have
neglected the global constraint in the Biot-Savart law,

G(cl ) ≡ lim
ξ→∞

U(ξ)/ξ = 0.

For fixed leading order of Θ(ξ), s, our constructed self-similar profiles only
depend on cl . We define function G(cl ) as the limit of the self-similar
profile U(ξ)/ξ for scaling exponent cl . We have the following results.

Using an iterative argument, we can get sharper and shaper estimates
of the profiles, and finally get that U(ξ)/ξ converge to G(cl ) < +∞
uniformly for cl > 2 in a closed interval. (see the next slide)
Using the above uniform convergence and the continuous dependence
of ODE solutions on parameters, we get that G(cl ) ∈ C ((2,+∞)).
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Continuity of G(cl)

Lemma G(cl ) = limξ→∞ U(ξ)ξ−1 > −2.
Otherwise Θ(ξ) > Cξ → W (ξ) > C → limξ→+∞ U(ξ)/ξ = +∞.
U(ξ0) > (−2 + ε)ξ0 → Θ(ξ) > Cξ1−ε/cl →W (ξ) < C .
W (ξ) < C → U(ξ) < Cξ ln ξ → W (ξ) < C(ln ξ)−1.
W (ξ) < C(ln ξ)−1 → U(ξ) < Cξ ln ln ξ.
U(ξ) < Cξ ln ln ξ →W (ξ) < C exp(−C(ln ξ)α).

We get shaper and shaper estimates of W (ξ) by analyzing the nonlinear
interaction in the self-similar equations. With W (ξ) < C exp(−C(ln ξ)α)
we can get that U(ξ)ξ−1 converge uniformly for cl in local closed interval.
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Determine the scaling exponent cl

With our previous construction, to prove the existence of solutions to the
self-similar equations, we need to show that there exist a solution to

G(cl ) = 0.

Using the continuity of G(cl ) and the intermediate value theorem, we only
need to show that there exist c l

l , c r
l > 2, such that

G(c l
l ) < 0, G(c r

l ) > 0.

Due to the nonlinearity of the self-similar equations, it is not easy to verify
the above condition directly. And we achieve this with the assistance of
numerical computation, namely, we use computer-assisted proof.
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A Computer-verifiable Condition

G(cl ) is defined as the limit limξ→∞
U(ξ)
ξ , and we cannot solve the ODE

system up to +∞ to estimate G(cl ). We use the following Lemma.
Lemma: At ξ0 > 0, if

U(ξ0) > 0,

then G(cl ) > 0;
if

U(ξ0)

ξ0
> −2, U(ξ0)/ξ0 + cl W (ξ0) +

cl (cl − 2)ξ0Θ(ξ0)

(U(ξ0) + 2ξ0)(clξ0 + U(ξ0))
< 0,

then G(cl ) < 0.

Our strategy is the following: We first numerically construct the near-field
self-similar profiles using the truncated power series solutions, and then
extend the local profiles to some ξ0 by solving the nonlinear ODE system.
Finally we employ the above Lemma to verify the sign of G(cl ).
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Far-field Property of the Self-similar Profiles

Using the above strategy, we can verify the existence of solution to G(cl )
and prove the existence of solutions to the self-similar equations. After we
get the solutions, we further analyze their properties at +∞.

By introducing a new variable ζ = ξ−1/cl and considering the ODE
system under the variable ζ, we can show that U(ξ)/ξ, W (ξ) and
Θ(ξ)/ξ are smooth functions of ζ using a bootstrap argument.
Then using an uniqueness argument, one can actually show that
U(ξ)/ξ, W (ξ), Θ(ξ) are analytic functions of ζ.

Specifically, we have

W (ξ) = O(ξ−1/cl ), U(ξ) = O(ξ1−1/cl ), Θ(ξ) = O(ξ
1− 2

cl ), ξ → +∞.

Thomas Y. Hou (Caltech) Self-similar Singularity November 2, 2015 31 / 50



Comments on the Far-field Property of the Profiles

Remark 1 The above results imply that U(ξ) = O(ξ1−1/cl ), thus

u(x ,T−) ≈ (T − t)cl−1U(
x

(T − t)cl
) ≈ Cx1−1/cl .

Namely the velocity field is Hölder continuous at the singularity time,
which agrees with our numerical simulation. Such behavior is also observed
in the simulation of Luo and Hou for the 3D Euler equations. vskip 0.3cm
It should be no surprise that we get U(ξ) = O(ξ1−1/cl ). Actually, based on
the above self-similar ansatz, this is the only possible growth rate such
that u(x ,T−1) remains bounded away from the singularity point.
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Existence of Self-similar Profiles

We verify the existence of root to G(cl ) = 0 for s = 2, 3, 4, 5, and thus
complete the following Theorem:
Theorem There exist a discrete family of self-similar profiles for the
CKY model, which correspond to different leading orders of the profile
Θ(ξ) at the origin, s = 2, 3, 4, 5. The self-similar profiles are analytic with
respect to ξ at the origin ξ = 0. Moreover U(ξ)/ξ, W (ξ) and Θ(ξ)/ξ are
analytic with respect to ζ = ξ−1/cl at ζ = 0.

Remark Our proof relies on the local nature of the Biot-Savart law, thus
cannot be generated to the HL model or the 3D Euler equations.
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Comparison with Direct Numerical Simulation

We compare the scaling exponents obtained from direct numerical
simulation of the CKY model and the solving the self-similar equations.

s = 2 s = 3 s = 4 s = 5
Direct Simulation 3.7942 3.3143 3.1718 3.0773

Self-similar Equations 3.7967 3.3157 3.1597 3.0841

Table : cl Table.

s = 2 s = 3 s = 4 s = 5
Direct Simulation −0.9747 −1.0001 −1.0006 −1.0007

Self-similar Equations −1 −1 −1 −1

Table : cw Table.
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Comparison of the Self-similar Profiles

We compare the self-similar profiles obtained from rescaling the singular
numerical solutions and from the self-similar equations.
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Figure : Self-similar profiles for s = 2 and s = 3 respectively.

We can see that the self-similar profiles we find are consistent with those
obtained from direct numerical simulation.
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Summary

Summary

Main contributions of our study: discovery of potentially singular
solutions of the 3D Euler equations
Similar singularity formation also observed in 2D Boussinesq
equations for stratified flows
The singularity occurs at a stagnation point where the effect of
convection is minimized.
Strong symmetry of the solution plus the presence of the physical
boundary seem to play a crucial in generating a stable and
substainable locally self-similar blowup.
Analysis of the corresponding 1D model sheds new light to the
blowup mechanism.
Analysis of the 2D Boussinesq and 3D Euler is more challenging
and is under investigation.
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